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Immune imbalance and barrier destruction of intestinal mucosa are the central pathogenic factors of Crohn’s disease (CD). In this
study, three independent microarray studies of CD were integrated and 9912 differentially expressed genes (DEGs) were analysed
by NetworkAnalyst to screen candidate crucial genes. NetworkAnalyst identified ELAV-like RNA binding protein 1 (ELAVL1) as
the most crucial upregulated gene and amyloid-β precursor protein (APP) as the most crucial downregulated gene in peripheral
blood of CD patients. By computing significance with hypergeometric test based on the KEGG pathway database, upregulated
DEGs highlight the pathways of T cell receptor signaling and the differentiation of T helpers. Downregulated DEGs were found
enriched in pathways in multiple cancers, MAPK signaling, Rap1 signaling, and PI3K-AKT signaling. Further taking all DEGs
together, Gene Set Enrichment Analysis (GSEA) brought out the NOD-like receptor (NLR) signaling pathway which could be
regulated by ELAVL1. xCell found decreased naïve and differentiated T cell proportions in the peripheral blood of CD patients
suggesting T cell migration to the intestinal tissue and/or exhaustion. Further, ELAVL1 expression correlating with multiple T
cell proportions suggests that ELAVL1 may regulate T cell activation. These findings illustrated that ELAVL1 and APP were
candidate crucial genes in the peripheral blood of CD patients. ELAVL1 possibly acts as a key regulator of T cell activation via
the NLR signaling pathway. APP might be a downstream effector of infliximab treatment connecting with MAPK signaling.

1. Introduction

Crohn’s disease (CD), as a systemic inflammatory disease,
mainly influences the gastrointestinal tract with a wide
range of contributing factors including host genetics,
immune system, environmental exposures, and the gut
microbiome [1]. Although the pathogenesis is complex,
the decades of studies have illustrated that CD is caused
by environmental factors that broke the mucosal barrier
and increased the luminal antigens into the lamina propria
[2]. Different innate immune cells, like dendritic cells, rec-
ognize the antigens via pattern recognition receptors, such
as Toll-like receptors (TLR) and NLR, and then regulate
the activation of T cells [3].

Among the factors associated with CD in immune sys-
tem, T cells were highlighted in CD pathology because about
200 CD risk loci are involved in T cell signaling [4, 5]. Fur-
thermore, the CD4+ T cell, including Th1, Th17, and regula-
tory T (Treg) cells, were associated with the severity of CD,
particularly with active inflammation [2]. In addition,
CD8+ T cell transcriptional signatures were identified as reli-
able prognostic biomarkers in the blood of CD patients [6, 7].
Likewise, numerous studies are devoted to the development
of diagnostic methods related to T cells for CD. For example,
four CD-related differentially methylated regions were iden-
tified in the whole blood [8]. In addition, one T cell subtype
from the blood of CD patients is enriched for the CD-risk
gene [9]. Nevertheless, the key regulators and mechanisms
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regulating T cell activation in the blood of CD have not been
fully described. Thus, we integrated three independent
microarray studies to screen crucial genes in the blood of
CD patients.

We performed an integrated bioinformatics analysis to
find key regulators by NetworkAnalyst [10], a web-based
visual analytics platform. Indeed, the utility of NetworkAna-
lyst to identify DEGs and the pathway has been demon-
strated recently. For example, network analyses identified
HNF4A and PTBP1 as effective biomarkers for Parkinson’s
disease [11] and 873 DEGs genetically related to insulin resis-
tance [12].

In this study, we launched a network-based bioinformat-
ics analysis in an attempt to screen DEGs in the blood of
CD patients, followed by the KEGG pathway enrichment
analysis, GSEA, and interaction network of DEGs. We iden-
tified ELAVL1 and APP, previously implicated in regulating
the activation of innate immunity [13, 14] and T cells [15],
the most significant up- and downregulated genes. Further-
more, GSEA data show that NOD-like receptor signaling-
associated gene signatures are enriched and the xCell anal-
ysis indicated that most T cells are significantly decreased
in the three microarray studies, which could help in under-
standing the role of ELAVL1 and APP in the blood of CD
patients.

2. Materials and Methods

2.1. Microarray Source. The microarray studies of CD were
downloaded from the Gene Expression Omnibus (GEO) by
using the terms “Crohn’s disease” and “blood”. Three micro-
array studies were selected for subsequent integrative analy-
sis. GSE86434 included 23 newly diagnosed CD patients
and 24 healthy controls (HC). GSE94648 included 22 healthy
controls, 9 inactive CD patients and 41 active CD patients.
GSE119600 included 47 adult healthy controls, 48 adult CD
patients, and 47 child CD patients. PRJEB28822 was chosen
to be the verified datasets from the European Nucleotide
Archive (ENA), which included 102 pediatric IBD patients
and 51 controls, and 95 adult IBD patients and 46 controls,
separately.

2.2. Gene Expression and Connectivity Correlation Assay. To
assess the comparability of two datasets, measures of average
gene expression and overall connectivity between two data-
sets were correlated. The higher the correlations, the better
the chance of finding similarities between the two datasets
at subsequent stages of the analysis. All enrolled datasets with
or without batch effect adjustment were examined for aver-
age expression correlation (correlation between expression
ranks of genes in two studies) and connectivity correlation
(correlation between connectivity ranks of genes in two stud-
ies) by R package WGCNA [16]. Better comparable datasets
were indicated by greater positive correlations and more sig-
nificant p values.

2.3. Integrated Network-Based Bioinformatics Analysis. We
performed integrated bioinformatics analysis using Networ-
kAnalyst [10] in accordance with the protocol [17]. After

annotating the gene probes to a common Entrez ID, these
datasets were normalized per platform requirement and
uploaded to the website. DEGs of each dataset were defined
by p < 0:05 and log2 fold change > 1. The Venn diagram of
DEGs was generated by the FunRich tool (version 3.1).

Network-based bioinformatics analysis was performed
by NetworkAnalyst according to the pipeline described.
The whole blood-specific protein-protein interaction (PPI)
of the top 20 DEGs and up- or downregulated genes was
constructed per protocol [17]; then, the KEGG pathway
enrichment analysis was performed by applying hypergeo-
metric test.

2.4. Gene Set Enrichment Analysis. Preranked GSEA was
analysed using a NetworkAnalyst module powered by R
package fgsea [10]. All DEGs ranked by fold changes were
put into the analysis, and the results was visualized as inter-
active heatmaps.

2.5. In Silico Immune Cell Type Enrichment Analysis. xCell, a
gene signature-based method reliably portraying the cellular
heterogeneity landscape of tissue expression profiles, was
performed to explore immune cell types [18], and the pro-
portion of T cells were obtained for each CD and HC sample
per instruction.

2.6. Statistical Analysis. All basic statistical analyses, including
the Mann–Whitney test, Pearson correlation, and Spearman
correlation were calculated by R software. A p value < 0.05
was considered to be statistically significant. Data were repre-
sented by mean and standard deviation (SD) or median and
quantile depending on distributions.

3. Results

3.1. Screening DEGs by Integrated Bioinformatics Analysis.
Three microarray studies (Table 1) were analysed using Net-
workAnalyst to screen DEGs in the blood of CD patients.
Firstly, these datasets were preprocessed to ensure they are
comparable enough. The correlations were positive and the
p values were significant in all cases before batch effect
adjustments (Figures 1(a)–1(c)). The correlations (cor) for
the gene expression and connectivity of GSE86434 and
GSE119600 (expression, cor = 0:97, p < 1e − 200; connectiv-
ity, cor = 0:74, p < 1e − 200) were better than GSE86434 and
GSE94648 (expression, cor = 0:76, p < 1e − 200; connectivity,
cor = 0:34, p < 1:6e − 135) or GSE94648 and GSE119600
(expression, cor = 0:75, p < 1e − 200; connectivity, cor =
0:34, p < 1:6e − 135). GSE86434 and GSE119600 were from
the same platform (Illumina HumanHT-12V4.0 expression
bead chip). Thus, it is consistent with the notion that datasets
from the same platform are more comparable than datasets
from different platforms. To remove this batch effect, para-
metric empirical Bayes frameworks provided by ComBat
function were applied by NetworkAnalyst. And the results
after batch effect moving were shown in Figures 1(d)–1(f),
indicating that the processed data are more comparable.
PCA plots with or without batch effect adjustment were visu-
alized in Figure 1(g).
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Integrated bioinformatics analysis identified 9912 DEGs
in the three microarray studies, in which 4705 genes were
upregulated and 5207 were downregulated in CD compared
with HC. A Venn diagram of integrative analysis DEGs and
individual DEGs are shown in Figure 1(h). There were 1361
genes specifically classified by integrated bioinformatics
analysis that are weakly but consistently expressed among
the three datasets. 2511 genes were identified as lost genes,
which are expressed in individual datasets but not in the
integrated datasets.

3.2. Top 20 Hub Genes Are Identified by Network-Based
Analysis. Firstly, we put all DEGs into network-based analy-
sis per instruction [10]. According to the degree of centrality
(DC) and betweenness (BC), the most highly ranked node
was APP (DC = 1056; BC = 4730653:29) followed by EGFR
(DC = 580; BC = 1711464:65) and ELAVL1 (DC = 574; BC
= 1999915:6) and the top 20 hub genes were presented
(Table 2). The results of the KEGG pathway enrichment
analysis of these 20 genes were shown in Table 3. The whole
blood-specific PPI (Figure 2(a)) and enrichment network
(Figure 2(b)) were generated by NetworkAnalyst. The zero-
order interaction network of these genes contained 20 nodes
and 38 edges (Figure 2(a)). The results of pathway enrich-
ment indicated that variables in the blood transcriptome of
CD were closely connected to several cancers including colo-
rectal cancer, and also with the PI3K-AKT and MAPK sig-
naling pathways.

3.3. ELAVL1 and APP Are Hub Genes Measured by Network
Analysis. Then, we analysed pathway enriched in up- or
downregulated DEGs separately to explore key regulators
in the blood of CD patients, by NetworkAnalyst [10]. Upreg-
ulated genes in the blood of CD were enriched in the
pathways, including T cell receptor signaling pathway,
primary immunodeficiency, Th1 and Th2 cell differentia-
tion, Th17 cell differentiation, and NF-kappa B signaling
pathway (Figure 3(a)). The most crucial gene among upreg-
ulated DEGs was ELAVL1 (DC = 357; BC = 709523:17)
(Figure 3(b)). Downregulated genes in the blood of CD were
enriched in the pathways, including pathways in cancer,
MAPK signaling pathway, Rap1 signaling pathway, and
PI3K-AKT signaling pathway (Figure 3(c)). The most cru-

cial gene among downregulated DEGs was APP (BC =
1244517:75; DC = 492) (Figure 3(d)).

Furthermore, we analysed an AmpliSeq study
(PRJEB28822) in the whole peripheral blood of IBD patients
[21]. APP expression was significantly reduced in pediatric
IBD patients compared with HC (FC = −0:54, p < 0:001),
while ELAVL1was significantly elevated (FC = 0:15, p < 0:05).

3.4. NOD-like Receptor Signaling Pathway Is Enriched in the
Blood of CD by GSEA Analysis. To further clarify the possible
mechanism of CD, preranked GSEA was performed to ana-
lyse the three microarray datasets separately or integrally
selecting fold change as the gene ranking methods
(Table 4). As shown in Table 4 and Figures 4(a)–4(d), GSEA
analysis suggested that NOD-like receptor signaling pathway
is the only enriched gene set we can find in the top 10
enriched gene sets of all three datasets. In addition, the inte-
grated dataset analysed by GSEA also indicated that NOD-
like receptor signaling pathway was enriched in CD patients
(Figures 4(e) and 4(f)). These results revealed that NOD-like
receptor signaling may act as a crucial role in the develop-
ment of CD.

3.5. ELAVL1 Expression Correlates with Genes in NLR
Signaling Pathway, and APP Expression Is Associated with
MAPK Signaling Cross Multiple Datasets. To further explore
and validate the association between candidate crucial genes
and top enriched signaling pathways in CD patients, we ana-
lysed the direct correlation between ELAVL1 and major
genes in the NLR pathway and correlation between APP
and major genes in MAPK signaling by the Pearson correla-
tion. As shown in Figure 5(a), genes in the NLR signaling
pathway, including NLRP1, NLRP3, CXCL8, TRAK4, and
TNF, were correlated with the expression of ELAVL1 at least
in one of the datasets. Additionally, GRB2, FOS, MYD88,
MAP3K3, and EGF were found associated with the expres-
sion of APP (Figure 5(b)). These results strongly supported
the direct correlation between ELAVL1 and NLR signaling,
as well as correlations between APP and MAPK signaling
in the peripheral blood of CD patients. A slight inconsistency
of correlations and significances among three datasets may
be due to varied sample sizes and markable heterogeneity of
the disease.

Table 1: Gene expression datasets used in this study.

Disease Datasets Platform Cases Controls References

Exploration

CD GSE86434 GPL10558 23 24 [8]

CD GSE94648 GPL19109 50 22 [19]

CD GSE119600 GPL10558 95 47 [20]

Validation

IBD PRJEB28822
Ion AmpliSeq Transcriptome
Human Gene Expression Panel

102 51
[21]

Pediatric Pediatric

95 46

Adult Adult
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Figure 1: Continued.
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3.6. Naïve and Differentiated T Cell Proportions in the
Peripheral Blood of CD Patients Are Decreased Compared to
Health Controls. Previous studies have indicated that distinct
T cell subsets, such as Th1/Th17, Tregs, memory, and naïve T
cells, are activated in the gut of CD patients. Therefore, we
performed xCell to explore the signature of T cells in the
peripheral blood of CD from the three datasets and found
that the altered T cell proportions were one of the hallmarks
in the peripheral blood of CD (Figure 6). Specifically, CD4+ T
cells were obviously decreased in GSE86434 (Figure 6(a)) and
GSE94648 (Figure 6(b); similar trends were also shown in

GSE119600 (Figure 6(c)). Because of the essential function
of CD4+ T cells in helping the activation of CD8+ T cells,
these data also show the decrease of CD8+ T cells in
GSE86434 (Figure 6(a)) and GSE94648 (Figure 6(b)), as well
as in GSE119600 (Figure 6(b). Similarly, the central memory
CD8+ T (Tcm) cells were clearly decreased in all three data-
sets. Of note, the effector memory CD8+ T (Tem) cells were
apparently decreased in the three datasets, which may be a
new hallmark in the blood of CD patients. In addition, Th1
cells, the cell type mostly relevant to CD, were disordered
in the three datasets. Since T cells are activated and recruited
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Figure 1: Screening DEGs by integrated bioinformatics analysis. The gene expression and connectivity of GSE86434 and GSE94648 (a),
GSE86434 and GSE119600 (b), and GSE94648 and GSE119600 (c). After moving batch effects with parametric empirical Bayes
frameworks provided by the ComBat function in R package sva, the gene expression and connectivity of GSE86434 and GSE94648 (d),
GSE86434 and GSE119600 (e), and GSE94648 and GSE119600 (f). (g) PCA plot for sample clustering of all datasets without batch effect
adjustment (A) and with batch effect adjustment (B). (h) Venn diagram of integrative analysis DEGs (Integrated-DE) and DEGs from
each individual dataset (Individual-DE).
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to the intestinal tissue in CD to resist bacterial infections and
continuously activated T cells can be exhausted, most T cell
subsets decreased in the peripheral blood of CD can be inter-
preted by T cell migration to the intestinal tissue and/or
exhaustion.

3.7. ELAVL1 Expression Correlates with Various T Cell Subset
Proportions in the Peripheral Blood of CD Patients. Since we
have found that ELAVL1 is closely associated to NLR signal-
ing, which has an important impact on priming the activa-
tion of T cells, we further investigate the association
between ELAVL1 expression and the xCell scores of T cells
in CD patients by the Spearman correlation. As shown in
Figures 7(a)–7(c), different T cell subsets, including CD4+

naive T cells, CD4+ Tcm, CD4+ Tem, CD8+ naive T cells,
CD8+ Tcm, and CD8+ Tem, were found positively correlated
with ELAVL1 expression in dataset GSE119600 including 95
CD patients (Figure 7(c)). These results suggest that the

upregulated expression of ELAVL1 is associated with T cell
activation, probably through promoting the NLR signaling
pathway. While in GSE86434 and GSE94648, the absence
of a significant correlation may due to limited CD sample
sizes of the two datasets.

4. Discussion

Up to date, the immunological pathogenesis of CD continues
to be complex, and finding the key regulators of the immune
response is essential for knowing the disease and improving
the clinical management of CD. Specifically, investigations
focusing on exploring CD pathogenesis and identifying ther-
apeutic targets are warranted for the discovery of effective
drugs. Here, we identified the candidate crucial genes in the
peripheral blood of CD by a network-based analysis of NCBI
GEO datasets GSE86434, GSE94648, and GSE119600. Inte-
grative analysis identified 9912 DEGs among these datasets.
ELAVL1 and APP were confirmed as the most significant
up- and downregulated genes by NetworkAnalyst. Further-
more, the differential expression significances of the two
hub genes were validated by an AmpliSeq dataset
PRJEB28822, indicating that ELAVL1 and APP may be
potential biomarkers for CD patients.

ELAVL1, also known as Hu antigen R (HuR), is an abun-
dant RNA binding protein that can affect the stability and
translation of many RNAs and participate in the regulation
of chronic inflammation and cancer progression [22, 23]. It
has been identified that ELAVL1 was increased after cellular
stress with protective activities [24], which is positively regu-
lated by NF-κB and Smads [25]. Furthermore, the increase of
ELAVL1 was confirmed to suppress inflammatory responses
in mice [23], suggesting the important role of ELAVL1 as a
posttranscriptional mediator for inflammation. However, it
is worth noting that the increased expression of ELAVL1 is
identified to promote the overexpression of COX-2, and thus
contributing to the growth of colon cancer, whose risk is
increased in the setting of CD [26, 27]. Moreover, the influ-
ence of ELAVL1 in promoting malignant transformation
has been well documented in multiple cancers [28–32]. That
is in consistent with our pathway enrichment of top 20 hub
genes indicating that variables in blood transcriptome of
CD were closely connected to several cancers including colo-
rectal cancer. The pathway enrichment of top 20 hub genes
also shed light on the PI3K-AKT and MAPK signaling path-
ways, that is in line with investigations that phosphorylation
by p38 MAPK results in the accumulation of ELAVL1 in the
cytoplasm [33] and the elevation of ELAVL1 is essential for
enhancing the proliferation of gastric cancer cells, which
depends on the activation of PI3K-AKT and NF-κB signaling
[34]. Our results highlight the crucial role of ELAVL1 in con-
necting inflammatory meditation with tumorigenesis, sug-
gesting the potential role of ELAVL1 in carcinogenesis of
colorectal cancer in the background of CD.

APP has been known as central to the pathogenesis of
Alzheimer’s disease (AD) and has been confirmed as the
potential biomarker in predicting brain amyloid-β burden
[35]. Although the specific mechanism coexisting in AD
and CD is still unclear, it has been demonstrated that there

Table 2: Top 20 hub genes with DC and BC.

Gene DC BC Expression

APP 1056 4730653 -33.853

EGFR 580 1711465 -15.619

ELAVL1 574 1999916 34.987

CAND1 381 578227.8 24.477

ITGA4 370 457397.4 -15.926

SIRT7 357 744489.5 -45.873

FBXO6 352 760217.7 -53.7

CCDC8 322 504043 -15.191

GRB2 303 630311.8 -26.82

TP53 281 621198.7 20.389

MOV10 260 573433.5 -20.408

NXF1 241 496040.6 -23.619

MYC 239 458057 21.06

HSP90AA1 232 486480.7 28.182

HUWE1 232 242665.7 26.081

LRRK2 223 216252.1 -31.578

COPS5 220 313401.8 48.805

ARRB2 219 230981.9 -42.185

PAN2 217 168810.6 30.93

CUL5 208 174910.9 22.703

Table 3: KEGG analysis of the 20 hub genes identified by network-
based analysis.

Term Count Gene p value

Endometrial cancer 4 20% 3.65e-6

Colorectal cancer 4 20% 1.77e-5

Prostate cancer 4 20% 2.85e-5

PI3K-Akt signaling pathway 6 30% 3.1e-5

Bladder cancer 3 15% 6.01e-5

Breast cancer 4 20% 1.45e-4

MAPK signaling pathway 5 25% 1.71e-4
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are genetic factors overlapping between AD and CD [36].
Besides, the immune response is considered one of major
contributors in both AD and CD. A recent review highlights
the influence of the peripheral immune system in AD [37],
such as monocytes and lymphocytes, which have been linked
to CD in a number of studies [38]. This overlap in the path-
ogenesis between the two diseases may suggest the potential
central role of APP in CD pathogenesis. Though literature
about APP in CD is very limited, we can still note that Apo-
lipoprotein E (APOE), widely found increased in serum of

CD patients who were primary nonrespondents or had
responded clinically and serologically after infliximab treat-
ment of CD [39], can increase transcription of APP signifi-
cantly [40]. Next, APP can active the MAPK signaling
pathway [41, 42], which is one of the top enriched gene sets
in our pathway enrichment analysis of top 20 hub genes.
Since detailed mechanism about infliximab treatment in
CD has not been fully elucidated, APP may be predicted as
a downstream effector of the treatment which is worthy of
further investigation.
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Figure 2: Top 20 hub genes are identified by network-based analysis. (a) Zero-order interaction network and (b) enrichment network of top
20 hub genes.
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The results fromGSEA of the individual and overall data-
bases highlight the NOD-like receptor signaling pathway in
the blood of CD patients. NOD1 and NOD2, members of
the NOD-like receptor family, are two important mediators
of inflammation induced by endoplasmic reticulum stress,
which is a major contributor to CD [43, 44]. In addition to

the roles in regulating innate immune responses, there are
plenty of evidences that NOD1 and NOD2 signaling have
an impact on adaptive immune responses. In mice, NOD1
and NOD2 signaling are involved in the activation of Th1,
Th2, and Th17 cells [45]. NOD2 also can drive CD8+ T cell
activation via the cross-presentation pathway [46]. Our
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Figure 3: ELAVL1 and APP are hub genes measured by network analysis. (a) Enrichment network and (b) zero-order interaction network of
upregulated genes identified by network-based analysis. (c) Enrichment network and (d) zero-order interaction network of downregulated
genes identified by network-based analysis.
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Figure 4: Continued.
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Figure 4: NOD-like receptor signaling pathway is enriched in the blood of CD by GSE analysis. (a) GSEA-generated heatmaps of core
enrichment genes in the NOD-like receptor signaling pathway upregulated in CD patients of three datasets. (b–d) Enrichment maps were
used for the visualization of NOD-like receptor signaling pathway enrichment results separately. (e) Integrated enrichment network of the
three microarray datasets was generated by NetworkAnalyst. (f) Enrichment map visualizes NOD-like receptor signaling pathway
enrichment results from integrated data.
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integrative analysis also highlights the pathway of the T cell
receptor signaling pathway and the differentiation of Th1,
Th2, and Th17, which act essential roles in the pathogenesis
of CD [38, 47, 48]. It is reasonable for us to assume that the
NLR signaling pathway may work as a key regulator of CD
pathology by activating T cells. Moreover, the highest rank-
ing of the integrated dataset analysed by GSEA is the MAPK
signaling pathway, followed by the Rap1 signaling pathway.
As known, Rap1 plays an essential role in regulating the acti-
vation of MAPK [49], which is definitely involved in the
development of CD [50] and is an effective target for the

treatment of CD [51]. Therefore, it will be interesting to focus
linkage between APP and MAPK and investigation of their
role in the progression of CD seems to be promising.

The adaptive immune system is considered the key regu-
lator of the pathogenesis of CD [3]. When the intestinal bar-
rier is broken, pattern recognition receptors, such as TLR
[52] and NLR [53], recognize the microbe-associated molec-
ular patterns, thus promoting the activation and differentia-
tion of T cells [54]. Especially, CD4+ T cells are activated
and differentiated into Th1/Th17, help the development of
memory T cells, and then recruited to the gut to fight against
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Figure 5: The transcriptome association between candidate crucial genes and top enriched signaling pathways in the peripheral blood of CD
patients. The gene expression correlation between ELAVL1 and selected genes in NLR signaling (a) and correlation between APP and selected
genes in MAPK signaling (b) in CD patients analysed using the expression data from the three datasets were represented by scatterplots with
regression lines. Pearson correlation coefficients (r) and p values were calculated and shown.
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Figure 6: T cell proportions are significantly altered in the peripheral blood of CD comparing to health control. The scatterplots show the
xCell scores for CD4+ (A) and CD8+ (B) T cells of CD and HC from GSE86434 (a), GSE94648 (b) and GSE119600 (c). ∗p < 0:05, ∗∗p <
0:01, and ∗∗∗p < 0:001.
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Figure 7: ELAVL1 expression correlates with multiple T cell subset activation in the peripheral blood of CD patients. The association between
ELAVL1 and the xCell scores of selected T cell subsets of CD patients were analysed using the expression data from GSE86434 (a), GSE94648
(b), and GSE119600 (c). Scatterplots were represented with regression lines. The Spearman correlation coefficients (r) and p values were
calculated and shown.
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the infection of bacteria, fungi, and viruses [55]. However,
continuous T cell activation will aggravate inflammatory
damage [2] and will even lead to the exhaustion of T cells
[56–58]. Of note, the exhaustion of T cells regularly impedes
the ability to defeat viral infection [59] and promote the
occurrence of cancer [60]. Interestingly, the data of xCell
indicated that CD4+ and CD8+ T cell proportions are obvi-
ously reduced in the blood, which may be caused by the
increased migration of T cells into the gut and/or the exhaus-
tion of T cells. Consistent with FACS data from other litera-
tures [61–63], our xCell analysis highlight the decrease of
CD8+ Tem as a general signature in the blood of CD, which
is conventionally considered a cytotoxic cell type to defect
the infection of virus. Although little is known about the
detail mechanism, these phenomena suggest that the
decrease of T cells, especially the CD8+ Tem, in the periph-
eral blood may be a novel feature for certain CD patients.

As known, ELAVL1/HuR acts as a central posttranscrip-
tional regulator of NOD2 expression, and HuR silencing can
reduce NOD2 expression and mRNA stability [64]. In addi-
tion, HuR stimulated by integrin engagement and the level
of HuR nuclear export are definitely involved in the activa-
tion of T cells [65]. Interestingly, we found that ELAVL1
expression showed strong positive correlations with multiple
T cell subset proportions in GSE119600. The association sup-

ports the idea that ELAVL1 can modulate the immune
response by activating the T cells. However, we cannot dem-
onstrate the regulatory roles of ELAVL1 on T cell activation
in the current transcriptome analysis; further investigation
in an animal model will be meaningful and straightforward.

In conclusion, our study suggests that ELAVL1 and APP
are candidate crucial genes in the blood of CD and highlights
the function of the NLR signaling pathway in priming the
activation of T cells of CD. ELAVL1 may modulate the
immune response of CD via the NLR signaling pathway
and in turn regulate T cells status. APP could be a down-
stream effector of infliximab treatment connecting with
MAPK signaling (a schematic diagram representing a possi-
ble mechanism is shown in Figure 8). Our analysis will be
helpful for further investigation and understanding of the
mechanism of ELAVL1 and APP in CD pathogenesis.
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